

According to the question
49 unit $=24.50$
1 unit $=0.5$
10000 unit $=10000 \times 0.5=5000$
Alternate :
Difference between CI and SI = $\frac{R^{2}}{100} \%$ of Principal
$\Rightarrow 24.5=\frac{7^{2}}{100} \%$ of X
$\Rightarrow \mathrm{X}=5000$

Sol 11. (c)
$11 \%=\frac{11}{100}$
Let $\mathrm{X}=100^{2}=10000$ unit

According to the question
121 unit $=60.50$
1 unit $=0.5$
10000 unit $=10000 \times 0.5=5000$

Alternate :

Difference between CI and SI =
$\frac{R^{2}}{100} \%$ of Principal
$\Rightarrow 60.5=\frac{11^{2}}{100} \%$ of X
$\Rightarrow \mathrm{X}=5000$

Sol 12. (b)
$15 \%=\frac{3}{20}$
Let $\mathrm{X}=20^{2}=400$ unit

According to the question
9 unit $=9$
1 unit = 1
400 unit $=400 \times 1=400$

Alternate :

Difference between CI and SI =
$\frac{R^{2}}{100} \%$ of Principal
$\Rightarrow 9=\frac{15^{2}}{100} \%$ of X
$\Rightarrow \mathrm{X}=400$

Sol 13. (b)
Rate of interest $=\left[\left(\frac{\text { Amount }}{\text { Principle }}\right)^{\frac{1}{t}}-1\right.$
] x 100
Where $\mathrm{t}=$ time interval

$$
\left.=\left(\frac{2409}{2190}\right)^{\frac{1}{3}}-1\right] \times 100=
$$

10%

Sol 14. (b)
Rate of interest $=\left[\left(\frac{\text { Amount }}{\text { Principle }}\right)^{\frac{1}{t}}-1\right.$
] x 100
Where $\mathrm{t}=$ time interval

$$
\left.=\left(\frac{8748}{7500}\right)^{\frac{1}{2}}-1\right] \times 100=8 \%
$$

New rate of interest $=8 \times 2=16 \%$
Desired Simple Interest $=$

$$
\frac{7500 \times 16 \times 23}{5 \times 100}=5520
$$

Sol 15.(b)
Since interest is compounded 10 monthly, effective rate of interest $=15 \times \frac{10}{12}=\frac{50}{4} \%$ and effective time period $=\frac{5}{2} \times \frac{12}{10}=3$ years
Now, $\frac{50}{4} \%=\frac{1}{8}$
Let the principal $=8^{3}=512$

Interest earned $=$
$64+64+64+8+8+8+1=217$
Now,
512 unit $=4096$
1 unit $=8$
217 unit $=1736$

Alternate :

$\frac{50}{4} \%=\frac{1}{8}$
Principal Amount
8 ------------- 9
8 -------------- 9
8 --------------- 9

$$
512 \quad 729
$$

According to the question
512 unit $=4096$
1 unit $=8$
$(729-512)$ unit $=217 \times 8=1736$

Sol 16. (a)
Rate of interest $=\left[\left(\frac{\text { Amount }}{\text { Principle }}\right)^{\frac{t}{t}}-1\right.$
] x 100
Where $\mathrm{t}=$ time interval
$=\left[\left(\frac{11664}{10000}\right)^{\frac{1}{2}}-1\right] \times 100=8 \%$
Desired Simple Interest $=$
$\frac{10000 \times 8 \times 27}{5 \times 100}=4320$

Sol 17. (b)
$10 \%=\frac{1}{10}$
Let the principal $=10^{4}=10000$

Total interest earned
$=1000+1000+100+1000+100+100$
$+10+1000+100+10+100+1+10+1$
$0+100=4641$ unit
According to the question
$(10000+4641)$ unit $=29282$
1 unit $=2$
10000 unit $=20000$
Desired Simple Interest $=$

$$
\frac{20000 \times 10 \times 4}{100}=8000
$$

Alternate :

$$
\begin{aligned}
& 10 \%=\frac{1}{10} \\
& 10 \text {-------- } 11 \\
& 10 \text {-------- } 11 \\
& 10 \text {-------- } 11 \\
& 10 \text {-------- } 11
\end{aligned}
$$

$$
10000---14641
$$

According to the question
$14641=29282$
1 unit $=2$
10000 unit $=20000$
Let the principal $=10$ unit and interest earned in one year $=1$
unit
\Rightarrow Interest earned in 4 years $=4$
unit
Now,
10 unit $=20000$
1 unit $=2000$
4 unit $=8000$

Sol 18. (d)
$15 \%=\frac{3}{20}$
Let the principal $=20^{3}=8000$

Interest earned $=$
$1200+1200+180+1200+180+180+$
$27=4167$ unit
According to the question
4167 unit $=4167$
1 unit = 1
8000 unit $=8000$
Desired Simple Interest $=$

$$
\frac{8000 \times 15 \times 24}{5 \times 100}=5760
$$

Alternate :

$15 \%=\frac{3}{20}$
20 ------------------- 23
20

8000 ----- 12167
According to the question
(12167-8000) unit $=4167$
1 unit = 1
8000 unit $=8000$
Let the principal $=20$ unit and
interest earned in one year $=3$
unit
\Rightarrow Interest earned in $\frac{24}{5}$ years $=$
14.4 unit

Now,
20 unit $=8000$
1 unit $=400$
14.4 unit $=5760$

Sol 19. (a)
Let the amount after 3 years $=$ 10000
\Rightarrow the amount after 5 years $=$ 11881
Rate of interest $=\left[\left(\frac{\text { Amount }}{\text { Principle }}\right)^{\frac{d}{t}}-1\right.$
] x 100
Where $\mathrm{t}=$ time interval

$$
\left.=\left(\frac{11881}{10000}\right)^{\frac{1}{2}}-1\right] \times 100=
$$

9\%

Sol 20. (c)
Let the amount after 2 years $=$ 1000000
\Rightarrow the amount after 5 years $=$
1191016
Rate of interest $=\left[\left(\frac{\text { Amount }}{\text { Principle }}\right)^{\frac{1}{t}}-1\right.$] x 100
Where $\mathrm{t}=$ time interval

$$
\left.=\left(\frac{1191016}{1000000}\right)^{\frac{1}{3}}-1\right] \times 100=
$$

6\%

Sol 21. (d)
$21 \%=\frac{21}{100}$
Let the $\mathrm{CP}=100^{2}=10000$ unit

Compound Interest earned $=$ $2100+2100+441=4641$
Simple interest earned $=$
$2100+2100=4200$
According to the question
4641 unit $=11602.5$
1 unit $=2.5$
4200 unit $=4200 \times 2.5=10500$

Alternate :

$21 \%=\frac{21}{100}$
100 -------- 121
100 -------- 121

10000 ----- 14641
According to the question
(14641-10000) unit $=11602.5$
1 unit $=2.5$
10000 unit $=25000$
Let the principal $=100$ unit and interest earned in one year $=21$
unit
\Rightarrow Interest earned in 2 years $=42$
unit
Now,
100 unit $=25000$

